Data Structures – CST 201 Module ~ 4

Syllabus

- Trees and Graphs
 - Trees
 - Binary Trees
 - Binary Tree Representation
 - Binary Tree Operations
 - Binary Tree Traversals
 - Binary Search Trees
 - Binary Search Tree Operations
 - Graphs
 - Representation of Graphs
 - Depth First Search and Breadth First Search on Graphs
 - Applications of Graphs

Tree

- Tree is a nonlinear data structure
- The elements appear in a non linear fashion, which require two dimensional representations.
- Using tree it is easy to organize hierarchical representation of objects.
- Tree is efficient for maintaining and manipulating data, where the hierarchy of relationship among the data is to be preserved.

Tree

■ **Definition:** A tree is a finite set of one or more nodes such that there is a specially designated node called the **root**. The remaining nodes are partitioned into $n \ge 0$ disjoint sets $T_1, ..., T_n$, where each of these sets is a tree. We call $T_1, ..., T_n$ the subtrees of the root.

- Node: Every individual element in a tree is called a node
- Edge/Links: Nodes are connected by using edges

- Here there are 11 nodes and 10 edges
- In any tree with N nodes there will be N-1 edges

• Root: It is the origin of the tree data structure. In any tree, there must be only one root node.

- Here A is the root node
- In any tree the first node is called root node

- Leaf Node/External Node/Terminal Node:
 - The node which does not have a child is called a leaf node.
 - A node without successor is called a leaf node.

- Internal Node/Non-terminal Node:
 - An internal node is a node with atleast one child.
 - Every non leaf node is called Internal node

Parent:

- The node which has child/children.
- A node which is predecessor of any other node.

Here A is the parent of B & C. B is the parent of D, E & F.

Child: Descendant of any node is called a child node.

Here children of A are B & C. Children of B are D, E & F.

• **Sibling**: The nodes with the same parent are called Sibling nodes.

• Degree of a Node: Total number of the children of the given node

Degree of the leaf node is 0.

• Degree of a Tree: It is the maximum degree of nodes

- Here maximum degree is for node B. Its degree is 3.
- So the degree of the given tree is 3

• Level: In a tree each step from top to bottom is called as a Level and the Level count starts with 'O' and incremented by one at each level

• Depth of a node: It is the total number of edges from root to that node.

Depth of node E is 2

 Depth of the tree: It is the total number of edges from root to leaf in the longest path

Depth of the tree = 3

• Height of a node: It is the total number of edges from longest leaf node in its subtree to that node.

Height of node B is 2

• Height of the tree: It is the total number of edges from longest path leaf node to root

• Height of the tree = 3

- Path: Sequence of nodes and edges between two nodes
- Length of the path: Total number of edges in the path

- Path between B and H is B-E-H. Its length is 2
- There is no path between B and G

- The **ancestors** of a node are all the nodes along the path from the root to the node.
- The immediate ancestor of a node is the "parent" node

Ancestors of E are B & A

• A **descendant** node of a node is any node in the path from that node to the leaf node.

• The immediate descendant of a node is the "child"

node.

Descendant nodes of B are D, E, F, H & I

Subtrees

Subtrees

Tree Representations

- 1. List Representation
- 2. Left Child Right Sibling Representation
- 3. Representation as a degree 2 tree

List Representations

Root comes first, followed by list of sub-trees

Left child Right sibling Representations

- Fixed sized nodes
 - Easier to work

Left_child data Right_Sibling

Two link/pointer fields per node

Representations as degree 2 tree

- Also known as Left child-Right child Tree/Degree Two Tree/ Binary Tree
- Simply rotate the right sibling pointers in the Leftchild Right-sibling tree clockwise by 45 degrees

Representations as degree 2 tree

Left Child Right Sibling Representation

Representations as degree 2 tree

Left Child Right Sibling Representation

Tree - Applications

- Storing naturally hierarchical data: Trees are used to store the data in the hierarchical structure. Example: Directory structure of a file system
- Organize data: It is used to organize data for efficient insertion, deletion and searching.
- Used in compression algorithms
- Routing table: The tree data structure is also used to store the data in routing tables in the routers.
- To implement Heap data structure: It is used to implement priority queues